
PHYSICAL REVIEW E DECEMBER 2000VOLUME 62, NUMBER 6
Glass transition in the quenched and annealed version of the frustrated lattice gas model
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~Received 24 July 2000!

In this paper we study the three-dimensional frustrated lattice gas model in the annealed version, where the
disorder is allowed to evolve in time with a suitable kinetic constraint. Although the model does not exhibit
any thermodynamic transition it shows a diverging peak at some characteristic time in the dynamical nonlinear
susceptibility, similar to the results on thep-spin model in mean field and the Lennard-Jones mixture recently
found by Donatiet al. ~e-print cond-mat/9905433!. Comparing these results to those obtained in the model
with quenched interactions, we conclude that the critical behavior of the dynamical susceptibility is reminiscent
of the thermodynamic transition present in the quenched model, and signaled by the divergence of the static
nonlinear susceptibility, suggesting therefore a similar mechanism also in supercooled glass-forming liquids.

PACS number~s!: 64.70.Pf
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I. INTRODUCTION

The study of glass forming systems and spin glasses
shown that these systems present a similar complex dyn
cal behavior. In both cases the relaxation time increases
matically when the temperature is lowered; furthermore
temperatures lower than some temperatureT* , the relaxation
functions are well fitted at long times by a stretched ex
nential function

f ~ t !5 f 0 expH 2S t

ta
D bJ , 0,b,1. ~1!

This similarity was further stressed by the observation t
the dynamical equations of a class of mean field spin g
models, calledp-spin glasses@1#, are precisely equal to th
mode coupling equations for supercooled liquids. Thep-spin
glasses are a generalization of the spin glass model, w
spins interact via three or more body interactions.

Despite these analogies the connection in finite dimens
between glass forming systems and spin glasses is not c
pletely clear. As far as the static properties are concern
spin glasses undergo a thermodynamic transition at a
defined temperatureTSG, where the nonlinear susceptibilit
diverges~a similar behavior is found also in thep spin in
finite dimension@2#!. The class of systems that show a tra
sition of this kind contains systems with very different m
croscopic structures, but with two essential common cha
teristics, namely, the presence of competitive interacti
~frustration! and of quenched disorder. On the other ha
glass formers are a class of systems where disorder is
originated by some fixed external variables, but is ‘‘se
generated’’ by the positions and orientation of particles. D
ferently from spin glasses, in glass forming liquids there
no sharp thermodynamic transition, characterized by the
vergence of a thermodynamical quantity analogous to
nonlinear susceptibility in spin glasses. However Don
et al. @3# have recently introduced a time dependent non
ear susceptibility both for spin models and for structu
glasses: they have shown that in the mean field sphe
model~where the mode coupling equations are exact!, and in
PRE 621063-651X/2000/62~6!/7715~8!/$15.00
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a Lennard-Jones mixture studied by molecular dynam
simulation@4#, the dynamical susceptibility exhibits a max
mum at some characteristic time, and that this maxim
diverges as the dynamical temperatureTD is approached
from above. One may wonder whether the presence of
maximum is related somehow to the presence of ‘‘qu
siquenched’’ disorder self-generated in the liquid, rese
bling the divergence of the nonlinear susceptibility presen
spin systems with quenched disorder. To shed some ligh
this problem in this paper we want to compare the proper
of the frustrated lattice gas model, which has been rece
introduced in the context of the glass transition@5#, in two
cases: when the disorder is quenched and when the diso
is self-generated.

In the quenched case the model is a spin glass dilu
with lattice gas variable, that being constituted by diffusi
particles is suited to study quantities such as the diffus
coefficient or the density autocorrelation functions, that
usually important in the study of liquids. This model exhib
in mean field@6# properties closely related to those ofp-spin
models. In three dimensions~3D!, at low enough tempera
ture, numerical simulations@7# show a behavior of the diffu-
sion coefficient very similar to that experimentally observ
in fragile liquids@8#. Moreover the model presents a contin
ous static transition where the fluctuations of the order
rameter, which coincide with the nonlinear susceptibility,
verge. This property is absent in the infinite dimensi
p-spin models@3# and in supercooled liquids studied by m
lecular dynamics simulations, as Lennard-Jones binary m
tures@4#.

Here we show the results obtained by studying the
frustrated lattice gas model in the annealed version, wh
the interactions are allowed to evolve with a kinetic co
straint @10#. We find that the dynamical behavior fits qui
well the behavior predicted by the mode coupling theory
is also easy to show that the model does not present
thermodynamic transition, consequently there is no div
gence in the nonlinear susceptibility. However the dynami
nonlinear susceptibility exhibits a maximum with a behav
similar to that found in the mean fieldp-spin model and in
molecular dynamics simulation of Lennard-Jones mixtu
We compare this behavior with the corresponding quanti
7715 ©2000 The American Physical Society
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7716 PRE 62FIERRO, de CANDIA, AND CONIGLIO
calculated in the quenched version and conclude that
thermodynamic transition, present in the quenched mo
and signaled by the divergence of the static susceptibi
manifests itself in the annealed model in the critical behav
of the dynamical susceptibility. This behavior seems a c
sequence of the fact at short enough time the interactions
be considered as quenched variables. Since the anne
model shows a behavior reminiscent of supercooled g
forming liquids, these results suggest that also in glass fo
ing liquids the behavior of time dependent nonlinear susc
tibility can be due to the presence of slow degree of freed
which acts for short time as quenched variables. Althou
the annealed lattice gas model does not show any therm
namic transition, we cannot exclude that this is due to
absence of significant interactions: typically in a real syst
the dynamical constraint corresponds to some kind of in
actions; in our case the static of the model is instead
scribed by a trivial Hamiltonian, while the complex dynam
ics is due to the kinetic constraint.

In Sec. II we recall briefly the main results of the mo
coupling theory for supercooled liquids; in Sec. III we intr
duce the dynamical nonlinear susceptibility as defined
Donati et al. Finally in Sect. IV we present the frustrate
lattice gas model and the dynamical behavior observed
numerical simulations in the quenched~Sec. IV A! and in the
annealed version~Sec. IV B!.

II. MODE COUPLING THEORY

In order to compare the dynamical behavior of the fru
trated lattice gas with the predictions of the mode coupl
theory ~MCT! for supercooled liquids@9# we recall briefly
the results of this theory. The equations of motion of t
normalized spatial Fourier transform of the density autoc
relation functionsFq(t) are evaluated under suitable a
proximations and a dynamical transition, considered as
idealization of the glass transition, is observed: at high te
perature the solutionsFq(t) vanish at long time~liquid
phase!; at temperatures below a certain critical valueTMCT
solutions with a nonzero long time limitf q ~called Debye-
Waller factor! appear~glass phase!. This transition is due to
the nonlinearity of the equations, and no thermodynam
phase transition is present.

Let us introduce some important quantities: the expon
parameter 0.5<l,1, that is a constant depending only o
the system, and the separation parameters, that is propor-
tional to x2xc , wherex is the external control paramete
~density or temperature! and xc is the critical value (s is
chosen positive in the glass phase!. Via the transcendenta
equation

G2~12a!

G~122a!
5

G2~11b!

G~112b!
5l, ~2!

the exponentl determines two exponents 0,a,0.5 and 0
,b<1, that rule the relaxation of the system near the cr
cal point.

The MCT predicts that in theb regime, near the dynami
cal transition, the correlators can be written as

Fq~ t !5 f q
c1hqcsg6~ t/ts!, for t0!t!ta , ~3!
e
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wherecs5Ausu and6 refers, respectively, to the glass an
liquid phase. The exponenta fixes the short time behavior
g6(t/ts)5(t/ts)2a for t0!t!ts , while for ts!t!ta one
has a constant in the glass phaseg1(t/ts)5(12l)1/2, and
the so called von Schweidler law in the liquid pha
g2(t/ts)52B(t/ts)b. Here two time scales, diverging a
the critical point is approached from above, appear

ts5t0usu2d, d5
1

2a
; ~4!

ta5t0B21/busu2g, g5
1

2a
1

1

2b
; ~5!

and t0 is a microscopic time characteristic of molecules m
tion.

Furthermore, in the liquid phase, the theory predicts
following scaling law for thea relaxation (t@ta):

Fq~ t !5F̃qS t

ta
D ; ~6!

where the master curveF̃q(t/ta) is well fitted by a stretched
exponential of the form~1!, with 0,b,1 depending on the
particular correlator, but not on the temperature. This fu
tional form usually fits the experiments as well.

In order to test the predictions of the MCT in theb re-
gime, Gleim and Kob@11# have introduced the following
quantity:

Rq~ t !5
Fq~ t !2Fq~ t8!

Fq~ t9!2Fq~ t8!
, ~7!

where t8 and t9 are arbitrary times in theb regime (t8
Þt9). From Eq.~3! we can see that, ifFq(t) is in agreement
with the leading-order prediction of the theory, thenRq(t)
must be independent onq in the b regime.

III. DYNAMICAL NONLINEAR SUSCEPTIBILITY

Donati et al. @3# have recently defined a dynamical no
linear susceptibility both for spin models and for structu
glasses. They have shown that in the mean fieldp-spin
spherical models~where the mode coupling equations a
exact! there is a characteristic time where the dynamical s
ceptibility has a maximum, and that this maximum diverg
as the dynamical temperatureTD is approached from above

The Hamiltonian of thep-spin model is

H5 (
i 1,•••, i p

Ji 1••• i p
Si 1

•••Si p
, ~8!

where p>3, the couplingsJi 1••• i p
are Gaussian with zero

mean and variance 1/Np21, and the spins are real variable
with the global constraint( i 51

N Si
2[N, whereN is the num-

ber of spins. The dynamical nonlinear susceptibilityx(t) is
defined by

x~ t !5bN@^q~ t !2&2^q~ t !&2#, ~9!
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PRE 62 7717GLASS TRANSITION IN THE QUENCHED AND . . .
whereq(t)5(1/N)( iSi(t8)Si(t81t) is the overlap between
the states at timest8 and t81t. Solving the equation of mo
tion for x(t) at temperature higher thanTD , they find that
x(t) displays a maximum as a function of time,x(t* ),
which is shifted to larger timest* asT approachesTD from
above and increases as a power lawx(t* )}(T2TD)2a.

A similar behavior has also been found in molecular d
namics simulation performed for a Lennard-Jones mixtur

IV. FRUSTRATED LATTICE GAS MODEL

A. The quenched model

Recently a lattice model, which has mean field proper
closely related to those ofp-spin models, has been intro
duced@5# in connection with the glass transition. This mod
is a diluted spin glass, which, being constituted by diffus
particles, is suited to study quantities such as the diffus
coefficient, or the density autocorrelation functions, that
usually important in the study of liquids. The Hamiltonian
the model is

2bH5J(̂
i j &

~e i j SiSj21!ninj1m(
i

ni , ~10!

whereSi561 are Ising spins,ni50,1 are occupation vari
ables, ande i j 561 are quenched and disordered intera
tions.

This model reproduces the Ising spin glass in the lim
m→` ~all sites occupied,ni[1). In the other limit,J→`,
the model describes a frustrated lattice gas with proper
recalling those of a ‘‘frustrated’’ liquid. In fact the first term
of Hamiltonian~10! implies that two nearest neighbor site
can be freely occupied only if their spin variables satisfy
interaction, that is ife i j SiSj51, otherwise they feel a stron
repulsion.

To make the connection with a liquid, we note that t
internal degree of freedomSi may represent, for example
internal orientation of a particle with nonsymmetric shap
Two particles can be nearest neighbors only if the rela
orientation is appropriate, otherwise they have to move ap
Since in a frustrated loop the spins cannot satisfy all inter
tions, in this model particle configurations in which a fru
trated loop is fully occupied are not allowed. The frustrat
loops in the model are the same of the spin glass model
correspond in the liquid to those loops which, due to g
metrical hindrance, cannot be fully occupied by the partic

Another possible interpretation of the model is thatni is
the occupation variable of thei th cell andSi indicates the
position of the center of mass of the particle inside the c
Si can in principle assume many different values correspo
ing to the coordinates of the center of mass inside the c
The interaction should take into account that not all pair
internal degree of freedom in two neighbors cells are
lowed. In the frustrated lattice gas model for simplicity w
drastically reduce the internal degree of freedom to only t
values (Si561) and introduce the interactione i j 561 be-
tween two neighbor spin variables to mimic the local dis
der of the medium. In the first version of the model w
assume that the local disorders are quenched.

In the caseJ5` the model has a maximum densi
rmax.0.68. It has been shown that there exists some den
-
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rc.0.62, where the system has a transition of the type ofd
p-spin model@12#, with a divergence of the static nonlinea
susceptibility

xSG5
1

N (
i j

@^SiniSjnj&
2#, ~11!

where the averagê•••& is over the Boltzmann measure
while the average@•••# is over the disorder configuration
$e i j %.

Here we show the results for the relaxation of the se
overlap, which is defined as

q~ t !5
1

N (
i

Si~ t8!ni~ t8!Si~ t81t !ni~ t81t !, ~12!

and for the dynamical susceptibility

x~ t !5N@^q~ t !2&2^q~ t !&2#, ~13!

where the averagê•••& is done on the reference timet8. In
Fig. 1 it is shown the relaxation functions^q(t)& for a system
of size 163 for densities betweenr50.58 and 0.62. Each
curve is obtained averaging over a time interval fort8 of 6
3106-83107 Monte Carlo steps, and finally averaging th
results over 16 realizations of the disorder. Note that ther
no sign of a two step relaxation. The long time tail of th
functions can be well fitted by a stretched exponential for
with an exponentb strongly dependent on the density, whic
tends to very low valuesb.0.2 at high density. In Fig. 2 it
is shown the dynamical susceptibilityx(t) for the same size
and values of density of Fig. 1. Note thatx(t) grows mono-
tonically and has no maximum at finite time. The asympto
valuex(`) corresponds to the static susceptibility~11!, and
therefore has a divergence at the densityrc.0.62.

B. The annealed model

We have studied the frustrated lattice gas model~10! in
the case where the interactionse i j 561 are annealed. When
we evaluate the partition function of the model, we mu

FIG. 1. Relaxation functions of the self-overlap in the quench
model, for a system of size 163 and densitiesr50.58, 0.59, 0.60,
0.61, 0.62.



f
io
tio
s
-
ag

ra

n
l-

a
i
e

or
in
ro

a
ca
n

ed
he
e
w

ed

bor
o

ust
rest

tion
ot

nc-
en-
nd

led

x-

ex-

he

7718 PRE 62FIERRO, de CANDIA, AND CONIGLIO
consider in this case not only theSi andni , but also thee i j
as dynamical variables. Thus, summing over thee i j and Si
we obtain, apart from an irrelevant factor,Z
5($ni ,Si ,e i j %

e2bH5($ni %
e2bHeff, where

2bHeff52K(̂
i j &

ninj1m(
i

ni , ~14!

andK52 ln@(11e22J)/2#. Therefore the static properties o
the model are equal to those of a lattice gas with a repuls
between nearest neighbor particles, and with no correla
between spins,̂ SiSj&5d i j . With the change of variable
ni5

1
2 (11s i), wheres i561 are Ising spins, this Hamil

tonian can be written as the Hamiltonian of an antiferrom
netic Ising model with an effective temperatureTeff
54K21, which is always greater than the critical tempe
ture of the 3D antiferromagnetic Ising modelTc.4.5. There-
fore we can conclude that the model~14!, and then also the
model ~10! with annealed interactions, does not present a
thermodynamic transition. In the following we consider a
ways the model withJ5`.

We assume a dynamics for the variablese i j with a kinetic
constraint, namely,e i j can change its state only if the sitesi
and j, and all their nearest neighbors, are empty; in this w
the accessible states to a given particle may change only
wide enough region of the system around it rearranges its
We expect that, as the temperature decreases, the dis
due to the local environment changes so slowly that the
teractions behave more and more as frozen playing the
of ‘‘self-induced quenched’’ variables.

In order to generate an equilibrium configuration at
given density we simulate the model without any dynami
constraint. In this case we can thermalize the system eve
high density. Once an equilibrium configuration is obtain
we consider a diffusive dynamics for the particles while t
interactions evolve with the kinetic constraint, as describ
before. In conclusion the simulations are done in the follo
ing way.

~1! One starts from an equilibrium configuration obtain
at some densityr.

FIG. 2. Dynamical susceptibility in the quenched model, for t
same system size and densities of Fig. 1.
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~2! At each step of dynamics an interactione i j is ran-
domly chosen and is changed if the sitesi andj, and all their
nearest neighbors, are empty.

~3! A particle ~occupied site! on the lattice, one of the
coordinate directions, and a final state of the spinSi are
randomly chosen.

~4! One tries to move the particle to the nearest neigh
site in the chosen direction. The particle can move if tw
conditions are both satisfied. First, the destination site m
be empty. Second, the spins of the particles that are nea
neighbors of the destination site, must satisfy the interac
with the spin of the chosen particle. If the particle cann
move in the chosen site, then the move is rejected.

~5! The clock advances one unit of time.
During this dynamics we have evaluated relaxation fu

tions and dynamic nonlinear susceptibility. Note that as d
sity grows, the relaxation time gets longer and longer, a
gets longer than our observation time~which is between 107

and 108 for a system of size 163) at a density approximately
r.0.63.

FIG. 3. Relaxation functions of the self-overlap in the annea
model, for a system of size 163 and densitiesr50.52, 0.53, 0.54,
0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61.

FIG. 4. Time temperature superposition principle for the rela
ation functions of the self-overlap, for densitiesr50.58, 0.59,
0.60, 0.61. The fitting function is a stretched exponential with
ponentb50.5.
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PRE 62 7719GLASS TRANSITION IN THE QUENCHED AND . . .
In Fig. 3 we show the relaxation functions of the se
overlap~12!, for a system of size 163, for various densities
betweenr50.52 and 0.61. Each curve is obtained averag
over a time interval fort8 of 33106–108 Monte Carlo steps.
Observe that for high density the relaxation functions clea
develop a two step relaxation, signaling the existence of
well separated time scales in the system. We interpret
first short time decay of the relaxation functions as due to
motion of the particles in the frozen environment, which
this time scales appear as quenched, while the second d
is due to the evolution of environment, and final relaxation
equilibrium of the system. The long time tail of the rela
ation functions is well fitted by a stretched exponential fo
~1!, where the exponentb depends very weakly from th
temperature~it is constant within the errors! and ranges be
tween b50.4 and b50.6. In Fig. 4 we show the time
temperature superposition of the relaxation functions of
overlap, for densities betweenr50.58 andr50.61. We
tried to fit the intermediate time part, corresponding to
plateau, of the relaxation function of the overlap for dens

FIG. 5. Fit of the intermediate time part of the relaxation fun
tion of the self-overlap, for densityr50.61, with the fitting func-
tion f 1At2a2Btb, where the fitting parameters aref, A, B, andl,
anda andb are given by the relation~2!.

FIG. 6. Dynamical susceptibility in the annealed model, for t
same system size and densities of Fig. 3.
g

y
o
e
e

cay
o

e

e
y

r50.61, with the function predicted by the MCT~in a sim-
plified form!

^q~ t !&5 f 1At2a2Btb, ~15!

where the fitting parameters aref, A, B, andl, while a andb
are given by the relation~2!. The result is shown in Fig. 5
where the full line is the fitting curve witha50.339
60.002 andb50.6960.01.

In Fig. 6 we show the dynamical nonlinear susceptibil
~13! for the same size and values of the density of Fig. 3
has the same behavior of thep-spin model in mean field and
of the molecular dynamics simulation of the Lennard-Jon
binary mixture@3#, namely, a maximumx(t* ) that seems to
diverge together with the time of the maximumt* , when the
density grows. For the highest density, the maximum ofx(t)
decreases, possibly due to finite size effects, too short ob
vation time, or a change in the dynamics above some crit
density. This fact is observed also in MD simulations
Lennard-Jones liquids@4#. We obtain that the maximum
x(t* ) as a function of the density can be fitted quite w

FIG. 7. Correlation functions of the density fluctuationsFq(t)
for q5(p/4,0,0) at densities~from bottom to top! r50.380, 0.490,
0.543, 0.584, 0.602.

FIG. 8. Correlation functions of the density fluctuationsFq(t)
for q5(p/2,0,0) at densities~from bottom to top! r50.380, 0.490,
0.543, 0.584, 0.602.
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7720 PRE 62FIERRO, de CANDIA, AND CONIGLIO
~taking out the last three points, where presumably a rou
ing of the divergence takes place! by the power lawx(t* )
}(rc2r)2a, with rc50.6660.01 anda53.660.2. At very
long timesx(t) decays to the equilibrium value, which
simply x(`)5r2.

To make a more direct comparison with MCT, we ha
evaluated, on a cubic lattice of size 83, the autocorrelation
functions of the density fluctuations

Fq~ t !5
^drq~ t81t !drq~ t8!&

^udrqu2&
, ~16!

where the averagê•••& is performed on timet8, the density
fluctuation of wave numberq is defined bydrq5rq2^rq&,
and

rq~ t !5(
i 51

n

e2 iq•ri (t), ~17!

wherer i(t) is the position of thei th particle at timet andn
is the particle number.

FIG. 9. Correlation functions of the density fluctuationsFq(t)
for q5(p,0,0) at densities~from bottom to top! r50.380, 0.490,
0.543, 0.584, 0.602.

FIG. 10. Rq(t) for q5(p/4,0,0), (p/2,0,0), and (p,0,0) at den-
sity r50.584.
d- Because of periodic conditions the allowable values oq
on a cubic lattice are of the form

q5
2p

L
~nx ,ny ,nz!, ~18!

wherenx ,ny ,nz51•••L/2 are integer values.
In Figs. 7–9 we show the results obtained at densi

between r50.380 and r50.602, respectively, forq
5(p/4,0,0), (p/2,0,0), and (p,0,0). Each curve is obtaine
averaging over a time interval fort8 of 106–107 steps and
finally averaging the results obtained by 322128 different
simulations. As we can see in figures, at low density
autocorrelation functions relax to zero with a one step dec
on the other hand, as the density increases we can recog
the two-step decay characteristic of glass forming system

As we have said in Sec. II, ifFq(t) satisfies the prediction
of the MCT, Rq(t) ~7! must be independent onq in the b
regime. We have evaluatedRq(t) ~with t9.400 and t8
.1.63105) at some densities for all values ofq considered
here and we have obtained thatRq(t) is independent onq on

FIG. 11. @Fq2 f q# as function of timet for q5(p/4,0,0) atr
50.548, 0.573, 0.602, 0.615. The full line is the power la
(t/3.6)20.66.

FIG. 12. @Fq2 f q# as function of t/t for q5(p/4,0,0) at r
50.548, 0.573, 0.602, 0.615, 0.625. The full line is the v
Schweidler law2(t/t)0.80.
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PRE 62 7721GLASS TRANSITION IN THE QUENCHED AND . . .
a large time interval~see Fig. 10!. In agreement with this
result we find that, after the initial transient, the correlat
Fq(t) are well fitted by a power law

f q1hqS t

t0
D 2a

~19!

and, in the intermediate time region, by a von Schweid
law

f q2hqS t

t D b

, ~20!

where the exponentsa andb are independent onq.
In Figs. 11 and 12 we show@Fq(t)2 f q# as function,

respectively, oft andt/t for q5(p/4,0,0) at different values
of densities. As we can see in figures the curves scale fo
values of density considered here and the data are in g
agreement, respectively, with the power law (t/t0)a ~with a
50.6660.11 andt053.663.0) and the von Schweidler law
2(t/t)b ~with b50.8060.13). The relaxation timet, ob-
tained as fitting parameter from Eq.~20!, is an increasing
function of density, well represented by a power law (rc
2r)2g, with rc50.6660.03 andg51.560.2 ~see Fig. 13!.
However, the values of the exponentsa and b obtained in
this case do not satisfy the relation~2! and are not in agree
ment with the exponents obtained for^q(t)&.

In Fig. 14 we show the correlatorsFq(t) as functions of
the rescaled timest̃ 5t/ta ; as we can see, the curves coi
cide at larget̃ , for all values of density considered here, wi
a common master curveF̃q , well fitted by a stretched expo
nential function@for q5(p/4,0,0) we obtainb.0.45]. This
result is consistent with the predictions of the MCT conce
ing thea relaxation.

FIG. 13. The relaxation timet as function of densityr. The full
line is the power law (0.662r)21.5.
n
.
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tt.
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Finally as the density grows the equilibrium syste
smoothly evolves towards an ‘‘ordered’’ state, analogous
the crystal state~the system at high enough density can rea
the equilibrium state only if frustration is reduced!. As a
consequence of this fact, the similarity between the anne
model and a supercooled glass forming liquid fails at h
density.

V. CONCLUSIONS

The frustrated lattice gas model in the quenched vers
presents a thermodynamic transition at a critical dens
where the static nonlinear susceptibility diverges. The
nealed model, which does not present any thermodyna
transition, consequently does not show any critical behav
of the static susceptibility; on the other hand we observe
‘‘apparent’’ divergence of the dynamical susceptibility at
value of densityrc ~where the structural relaxation time als
diverges!. We suggest that this behavior is due to the fa
that at short enough time the disorder can be considere
quenched. Moreover the similarity between the annea
model and the supercooled glass forming liquids sugg
that also in these systems a similar mechanism may be
sponsible for the critical behavior of the dynamical susc
tibility, and one might speculate that if one could in spec
systems freeze some degree of freedom one could fin
behavior similar to systems with quenched disorder.
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FIG. 14. Fq as function oft/ta for q5(p/4,0,0) atr50.467,
0.490, 0.521, 0.543, 0.573, 0.584. The full line is the stretch

exponential functione2(t/ta)0.45
.
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