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Glass transition in the quenched and annealed version of the frustrated lattice gas model
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In this paper we study the three-dimensional frustrated lattice gas model in the annealed version, where the
disorder is allowed to evolve in time with a suitable kinetic constraint. Although the model does not exhibit
any thermodynamic transition it shows a diverging peak at some characteristic time in the dynamical nonlinear
susceptibility, similar to the results on tipespin model in mean field and the Lennard-Jones mixture recently
found by Donatiet al. (e-print cond-mat/9905433Comparing these results to those obtained in the model
with quenched interactions, we conclude that the critical behavior of the dynamical susceptibility is reminiscent
of the thermodynamic transition present in the quenched model, and signaled by the divergence of the static
nonlinear susceptibility, suggesting therefore a similar mechanism also in supercooled glass-forming liquids.

PACS numbd(s): 64.70.Pf

[. INTRODUCTION a Lennard-Jones mixture studied by molecular dynamics
simulation[4], the dynamical susceptibility exhibits a maxi-
The study of glass forming systems and spin glasses hagum at some characteristic time, and that this maximum
shown that these systems present a similar complex dynanfliverges as the dynamical temperaturg is approached
cal behavior. In both cases the relaxation time increases dr&0m above. One may wonder whether the presence of this
matically when the temperature is lowered; furthermore afhaximum is related somehow to the presence of “qua-

temperatures lower than some temperafirethe relaxation ~ Siquénched” disorder self-generated in the liquid, resem-
functions are well fitted at long times by a stretched expo-P!ing the divergence of the nonlinear susceptibility present in
nential function spin systems with quenched disorder. To shed some light on

this problem in this paper we want to compare the properties
t\8 of the frustrated lattice gas model, which has been recently
f(t):foexp{ _(_) ] 0<B<1. 1) introduced in the context of the glass transitidl, in two
T cases: when the disorder is quenched and when the disorder

. ) is self-generated.
This similarity was further stressed by the observation that |n the quenched case the model is a spin glass diluted

the dynamical equations of a class of mean field spin glasgith lattice gas variable, that being constituted by diffusing
models, calledp-spin glasse$l], are precisely equal to the particles is suited to study quantities such as the diffusion
mode coupling equations for supercooled liquids. Prepin  coefficient or the density autocorrelation functions, that are
glasses are a generalization of the spin glass model, whetesually important in the study of liquids. This model exhibits
spins interact via three or more body interactions. in mean field 6] properties closely related to thosembpin
Despite these analogies the connection in finite dimensiomodels. In three dimension8D), at low enough tempera-
between glass forming systems and spin glasses is not corire, numerical simulationg] show a behavior of the diffu-
pletely clear. As far as the static properties are concernedion coefficient very similar to that experimentally observed
spin glasses undergo a thermodynamic transition at a welh fragile liquids[8]. Moreover the model presents a continu-
defined temperaturésg, where the nonlinear susceptibility ous static transition where the fluctuations of the order pa-
diverges(a similar behavior is found also in thespin in  rameter, which coincide with the nonlinear susceptibility, di-
finite dimension2]). The class of systems that show a tran-verge. This property is absent in the infinite dimension
sition of this kind contains systems with very different mi- p-spin modelq3] and in supercooled liquids studied by mo-
croscopic structures, but with two essential common charadecular dynamics simulations, as Lennard-Jones binary mix-
teristics, namely, the presence of competitive interactionsures[4].
(frustration and of quenched disorder. On the other hand, Here we show the results obtained by studying the 3D
glass formers are a class of systems where disorder is nétustrated lattice gas model in the annealed version, where
originated by some fixed external variables, but is “self-the interactions are allowed to evolve with a kinetic con-
generated” by the positions and orientation of particles. Dif-straint[10]. We find that the dynamical behavior fits quite
ferently from spin glasses, in glass forming liquids there iswell the behavior predicted by the mode coupling theory. It
no sharp thermodynamic transition, characterized by the diis also easy to show that the model does not present any
vergence of a thermodynamical quantity analogous to thé¢hermodynamic transition, consequently there is no diver-
nonlinear susceptibility in spin glasses. However Donatigence in the nonlinear susceptibility. However the dynamical
et al. [3] have recently introduced a time dependent nonlin-nonlinear susceptibility exhibits a maximum with a behavior
ear susceptibility both for spin models and for structuralsimilar to that found in the mean fielokspin model and in
glasses: they have shown that in the mean field sphericaholecular dynamics simulation of Lennard-Jones mixture.
model(where the mode coupling equations are exawid in ~ We compare this behavior with the corresponding quantities
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calculated in the quenched version and conclude that theherec,= \[o| and = refers, respectively, to the glass and
thermodynamic transition, present in the quenched moddiquid phase. The exponeatfixes the short time behavior,
and signaled by the divergence of the static susceptibilityg. (t/t,)=(t/t,) 2 for to<t<t,, while for t,<t<r, one
manifests itself in the annealed model in the critical behaviohas a constant in the glass phagg(t/t,)=(1—\)"? and

of the dynamical susceptibility. This behavior seems a conthe so called von Schweidler law in the liquid phase
sequence of the fact at short enough time the interactions cap (t/t,)= —B(t/t,)°. Here two time scales, diverging as
be considered as quenched variables. Since the annealg critical point is approached from above, appear

model shows a behavior reminiscent of supercooled glass

forming liquids, these results suggest that also in glass form-

ing liquids the behavior of time dependent nonlinear suscep- te=tolo| ™% &= 23 4
tibility can be due to the presence of slow degree of freedom

which acts for short time as quenched variables. Although

the annealed lattice gas model does not show any thermody- Ta=toB o], y=o—+
namic transition, we cannot exclude that this is due to the 2a 2b
absence of significant interactions: typically in a real system . ] o o
the dynamical constraint corresponds to some kind of inter@ndto is @ microscopic time characteristic of molecules mo-
actions; in our case the static of the model is instead dellon. _ o _
scribed by a trivial Hamiltonian, while the complex dynam- ~ Furthermore, in the liquid phase, the theory predicts the

1 1
®)

ics is due to the kinetic constraint. following scaling law for thex relaxation ¢>7,):

In Sec. Il we recall briefly the main results of the mode
coupling theory for supercooled liquids; in Sec. Ill we intro- D (=D . 6)
duce the dynamical nonlinear susceptibility as defined by q N7,

Donati et al. Finally in Sect. IV we present the frustrated

lattice gas model and the dynamical behavior observed byhere the master cuni,(t/7,) is well fitted by a stretched
numerical simulations in the quenchegkec. IV A) and in the exponential of the forni1), with 0<8<1 depending on the

annealed versiofSec. IV B). particular correlator, but not on the temperature. This func-
tional form usually fits the experiments as well.
Il. MODE COUPLING THEORY In order to test the predictions of the MCT in tifere-
gime, Gleim and Kob[11] have introduced the following

In order to compare the dynamical behavior of the frus'quantity:
trated lattice gas with the predictions of the mode coupling
theory (MCT) for supercooled liquid$9] we recall briefly D, (1)~ D (')
the results of this theory. The equations of motion of the Rq(t) = —a- a7
normalized spatial Fourier transform of the density autocor- Dy (1) —Py(t")
relation functions®,(t) are evaluated under suitable ap-
proximations and a dynamical transition, considered as awheret’ andt” are arbitrary times in theg3 regime ¢’
idealization of the glass transition, is observed: at high tem+t"). From Eq.(3) we can see that, ib(t) is in agreement
perature the solutiongy(t) vanish at long time(liquid  with the leading-order prediction of the theory, thRg(t)
phasg; at temperatures below a certain critical valliget  must be independent apin the 8 regime.
solutions with a nonzero long time limft, (called Debye-

)

Waller facto) appearn(glass phase This transition is due to . DYNAMICAL NONLINEAR SUSCEPTIBILITY
the nonlinearity of the equations, and no thermodynamic
phase transition is present. Donati et al. [3] have recently defined a dynamical non-

Let us introduce some important quantities: the exponenlinear susceptibility both for spin models and for structural
parameter 05\ <1, that is a constant depending only on glasses. They have shown that in the mean figispin
the system, and the separation parametethat is propor- ~spherical modelgwhere the mode coupling equations are
tional to x—x,, wherex is the external control parameter exacl there is a characteristic time where the dynamical sus-
(density or temperatuyeand X, is the critical value ¢ is  ceptibility has a maximum, and that this maximum diverges

chosen positive in the glass phas¥ia the transcendental as the dynamical temperatufg is approached from above.
equation The Hamiltonian of thg-spin model is

I'’(1—a) TI'?(1+b) B e
F(l—Za):F(l-FZb) —M @ H_i1<2<ip Sy Sy ®

the exponenh determines two exponentsa<<0.5 and 0 wherep=3, the couplings]il,,_ip are Gaussian with zero
<b=1, that rule the relaxation of the SyStem near the Criti'mean and variance MP71, and the Spins are real Variab|eS,

cal point. _ _ . ~with the global constrainE]! ;S?=N, whereN is the num-
The MCT predicts that in th@ regime, near the dynami- per of spins. The dynamical nonlinear susceptibijtt) is
cal transition, the correlators can be written as defined by

q)q(t):fg‘l'hqco.gi(t/tg), for t0<t<7'a, (3) X(t):,BN[<Q(t)2>_<Q(t)>2], (9)
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whereq(t)=(1/N)Z;S(t')S(t’ +1) is the overlap between A
the states at timels andt’ +t. Solving the equation of mo- — 06 Fe.
tion for y(t) at temperature higher thar,, they find that hrod [
x(t) displays a maximum as a function of timg(t*), \V4
which is shifted to larger times* asT approached  from ,
above and increases as a power Jg{t* )oc(T—Tp) ™ “. 0.4
A similar behavior has also been found in molecular dy- ]
namics simulation performed for a Lennard-Jones mixture. 0.3 71

IV. FRUSTRATED LATTICE GAS MODEL 0.2

A. The quenched model 0.1 i

Recently a lattice model, which has mean field properties :
closely related to those gf-spin models, has been intro- 0

N e e
duced[5] in connection with the glass transition. This model 118 1907 10" 10" 107 10" 10
is a diluted spin glass, which, being constituted by diffusing t

particles, is suited to study quantities such as the diffusion FIG. 1. Relaxation functions of the self-overlap in the quenched
coefficient, or the density autocorrelation functions, that are . "¢ o system of size 1@nd densitiep=0.58, 0.59, 0.60
usually important in the study of liquids. The Hamiltonian of 4 c1 " 6o ' ’ '
the model is '

p.=0.62, where the system has a transition of the typedof 3
—,8H=JZ (€SS~ 1)ninj+,u2 n, (10 p-spin model[12], with a divergence of the static nonlinear
() ' susceptibility

whereS;==*1 are Ising spinsh;=0,1 are occupation vari- 1
ables, ande;;==1 are quenched and disordered interac- Xse=y > [(smigin;)2l, (13)
tions. i

This model reproduces the Ising spin glass in the I|m|tWhere the averagé- --) is over the Boltzmann measure,

p— (@l sites o_ccuplednizl). In th? other “m.'t"]_)oo’ . while the averagé- - -] is over the disorder configurations
the model describes a frustrated lattice gas with properne&_}
e

recalllng thqse of a"‘fru_strated” liquid. In fact thg first term Here we show the results for the relaxation of the self-
of Hamiltonian(10) implies that two nearest neighbor sites S :
) : A ) . overlap, which is defined as

can be freely occupied only if their spin variables satisfy the
interaction, that is if;; S;S;= 1, otherwise they feel a strong 1
repulsion. q(t)= N E S (t)S(t' +t)n(t'+t), (12

To make the connection with a liquid, we note that the !
internal degree of freedorS, may represent, for example,
internal orientation of a particle with nhonsymmetric shape.
Two particles can be nearest neighbors only if the relative =N )2)— (a(t))2 13
orientation is appropriate, otherwise they have to move apatrt. X(O=NKa(O=(a(0)"], (13

Since in a frustrated loop the spins cannot satisfy all interacynere the average - -) is done on the reference tinté. In
tions, in th|§ model partlt_:le configurations in which a frus- Fig. 1 it is shown the relaxation functiog(t)) for a system
trated loop is fully occupied are not allowed. The frustrated ¢ ¢ize 16 for densities betweep=0.58 and 0.62. Each
loops in the model are the same of the spin glass model ang e is obtained averaging over a time interval foiof 6
corre_spon_d in the liquid to those loops WhICh, due to 90~ 1h-8% 10’ Monte Carlo steps, and finally averaging the
metrical hmdranpe, cannot be fglly occupied by the par.t'desresults over 16 realizations of the disorder. Note that there is
Another possible interpretation of the model is thais || sign of a two step relaxation. The long time tail of the
the occupation variable of thieh cell andS; indicates the  f,nctions can be well fitted by a stretched exponential form,
posmon of .the. center of mass of t.he particle inside the Ce"with an exponeng strongly dependent on the density, which
.S‘ canin pr|n0|pl_e assume many different Va'“_es porrespondt-ends to very low valueg=0.2 at high density. In Fig. 2 it
ing to the coordinates of the center of mass inside the_celrks shown the dynamical susceptibilig(t) for the same size
The interaction should take into account that not all pair of, 4\ aiues of density of Fig. 1. Note that) grows mono-
internal degree of freedom in wo neighbors cells are al'tonically and has no maximum at finite time. The asymptotic

lowed. In the frustrated lattice gas model for simplicity we,, : o

X . alue corresponds to the static susceptibi , and
drastically reduce the internal degree of freedom to only tWO[heref)c()E(:o)has a diF\)/ergence at the densgyt(?Gan)
values §==*1) and introduce the interaction;=+1 be- o

tween two neighbor spin variables to mimic the local disor-
der of the medium. In the first version of the model we
assume that the local disorders are quenched. We have studied the frustrated lattice gas madé) in

In the caseJ=« the model has a maximum density the case where the interactiogg= =1 are annealed. When
Pmax=0.68. It has been shown that there exists some densitywe evaluate the partition function of the model, we must

and for the dynamical susceptibility

B. The annealed model
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FIG. 2. Dynamical susceptibility in the quenched model, for the

same system size and densities of Fig. 1.

consider in this case not only tt& andn;, but also the;;
as dynamical variables. Thus, summing over &)eand S

t

FIG. 3. Relaxation functions of the self-overlap in the annealed
model, for a system of size &nd densitiep=0.52, 0.53, 0.54,
0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61.

(2) At each step of dynamics an interactiey) is ran-
domly chosen and is changed if the sitesdj, and all their

we obtain, apart from an irrelevant factorZ  nearest neighbors, are empty.
=3 e AH=x, e BHer where (3) A particle (occupied sitg on the lattice, one of the
{nix3|vfij} {n;} ! . . X . .
coordinate directions, and a final state of the sBjnare
randomly chosen.
—BHer= _K% ninj+:“2i ni, (14) (4) One tries to move the particle to the nearest neighbor

site in the chosen direction. The particle can move if two

conditions are both satisfied. First, the destination site must
be empty. Second, the spins of the particles that are nearest

the model are equal to those of a lattice gas with a repulsioﬂeighbors of the destination site, must satisfy the interaction

between nearest neighbor particles, and with no correlatio?ll\”th th_e tshpln r?f the c_?ostin p?r:ncle. If t_he p_artgc(lje cannot
between spins(S;S;)=4;;. With the change of variables mo(\g)e %’nhe iloccl?zzr\]/:rl]sés c?r?e uii?cﬂvt?n:se rejected.
ni=3(1+0;), whereo;==1 are Ising spins, this Hamil- |

tonian can be written as the Hamiltonian of an antiferromag;[ior?suggg éh'ﬁaﬁ;ar:rgﬁﬁnvggrhsivsigvsé?litedNﬁ?t(ﬁgf gsflér;__
netic Ising model with an effective temperatur€y; y P v

=4K 1, which is always greater than the critical tempera—Sity grows, the relaxation timg gets Io.nge.r and Ionger7, and
ture of t,he 3D antiferromagnetic Ising model=4.5. There- gets longer than our obsgrvaﬂon tlrtwhmh IS betwegn 10
fore we can conclude that the modé&#H), and then also the and 16 for a system of size £ at a density approximately

andK=—In[(1+e ?)/2]. Therefore the static properties of

model (10) with annealed interactions, does not present an)on'Gs'
thermodynamic transition. In the following we consider al- A
ways the model with) =, -
We assume a dynamics for the variabégswith a kinetic =
constraint, namelyg;; can change its state only if the sites v

andj, and all their nearest neighbors, are empty; in this way
the accessible states to a given particle may change only if a
wide enough region of the system around it rearranges itself.
We expect that, as the temperature decreases, the disorder
due to the local environment changes so slowly that the in-
teractions behave more and more as frozen playing the role
of “self-induced quenched” variables.

In order to generate an equilibrium configuration at a
given density we simulate the model without any dynamical
constraint. In this case we can thermalize the system even at
high density. Once an equilibrium configuration is obtained, 0 1
we consider a diffusive dynamics for the particles while the
interactions evolve with the kinetic constraint, as described
before. In conclusion the simulations are done in the follow-  F|G. 4. Time temperature superposition principle for the relax-
ing way. ation functions of the self-overlap, for densitigps=0.58, 0.59,

(1) One starts from an equilibrium configuration obtained.60, 0.61. The fitting function is a stretched exponential with ex-
at some density. ponentB=0.5.

! 10
t/Ta
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FIG. 5. Fit of the intermediate time part of the relaxation func-  FIG. 7. Correlation functions of the density fluctuatiohg(t)
tion of the self-overlap, for density=0.61, with the fitting func-  for g=(/4,0,0) at densitiefrom bottom to top p=0.380, 0.490,
tion f+ At~ 2—Bt®, where the fitting parameters &ieA, B, and\, 0.543, 0.584, 0.602.
anda andb are given by the relatiofR).

p=0.61, with the function predicted by the MQin a sim-

In Fig. 3 we show the relaxation functions of the self- plified form)

overlap(12), for a system of size £6 for various densities
betweerp=0.52 and 0.61. Each curve is obtained averaging

aene Tt or g vy e rlariton antons eary/ne1e (e fiting parameters ateh 8 and), while aand
9 y Yare given by the relatiof2). The result is shown in Fig. 5,

develop a two step relaxation, signaling the existence of tW%vhere the full line is the fitting curve witha=0.339

well separated time scales in the system. We interpret the. _
first short time decay of the relaxation functions as due to the” Ol'nogizgag(?v; 2&?&\/ ?ﬁ%ldynamical nonlinear susceptibility

motion of the particles in the frozen environment, which on

o ) 13) for the same size and values of the density of Fig. 3. It

this time scales appear as quenched, while the second de Ve ih behavior of . del i field and

is due to the evolution of environment, and final relaxation to s the same behavior 0 tlus_spm modet In mean Tieic an
o i . of the molecular dynamics simulation of the Lennard-Jones

equilibrium of the system. The long time tail of the relax-

. ) . *

ation functions is well fitted by a stretched exponential formb!nary mixture{3], namely’.a maX|mun7((t_ ) that seems to
diverge together with the time of the maximui, when the

(1), where the exponeng depends very weakly from the density grows. For the highest density, the maximuny @)

temperaturgit is constant within the errofsand ranges be- decregsges dssibl duegt]o finite sizeyéffects too sf?(l)rt obser-

tween 8=0.4 and 8=0.6. In Fig. 4 we show the time- P y '

temperature superposition of the relaxation functions of thé/atlon time, or a change in the dynamics above some critical

o -~ - density. This fact is observed also in MD simulations of
oyerlap, _for dgnsmes t_)etwe_epl—o.58 andp—0.6;. we Lennard-Jones liquid$4]. We obtain that the maximum
tried to fit the intermediate time part, corresponding to the

* ) ) . X
plateau, of the relaxation function of the overlap for densityX(t ) as a function of the density can be fitted quite well

(q(t))=f+At 2Bt (15)

1 B
0.9
0.8

x(t)
(1)

0.7 .-
0.6 F
0.5 F
0.4 F
0.3F
0.2 f
0.1 F

t
FIG. 8. Correlation functions of the density fluctuatiohg(t)
FIG. 6. Dynamical susceptibility in the annealed model, for thefor g=(7/2,0,0) at densitie§from bottom to top p=0.380, 0.490,
same system size and densities of Fig. 3. 0.543, 0.584, 0.602.



7720 FIERRO, de CANDIA, AND CONIGLIO PRE 62

~ 1 « F
C; r ,1\0,7 r
®9F <
: 0.6
0.8 F [.
07 kb 05F:
0.5 — 03F
0.4 [ 0.2 F :
0.3 — ’ " 011
0.2 f . D:g‘a’:g:\\ 0 *
N S 3& e -0.1 F
0 |\\ z'f?fvvvmwgv 4%"7”“‘;“%9%. s b “""1”02' : ““‘1“03‘ "““1“04‘ . ””‘1“05‘ ""“1“06
1 10 10 10 10 10 10t t
FIG. 9. Correlation functions of the density fluctuatiohg(t) FIG. 11. [®,—f,] as function of timet for q=(/4,0,0) atp
for gq=(,0,0) at densitiegfrom bottom to top p=0.380, 0.490, 20'54536 62'573’ 0.602, 0.615. The full line is the power law
0.543, 0.584, 0.602. (t/3.6) "™

ing of the divergence takes placky the power lawy(t*) ~ ©On a cubic lattice are of the form

x(p.—p) ¢, with p.=0.66=0.01 andae=3.6£0.2. At very 5

long times x(t) decays to the equilibrium value, which is _em

SIm%'y X(oo;(ii)z- Y q q= T(nx,n)”nz)r (18)
To make a more direct comparison with MCT, we have

evaluated, on a cubic lattice of siz€,8&he autocorrelation wheren,,ny,n,=1---L/2 are integer values.

functions of the density fluctuations In Figs. 7-9 we show the results obtained at densities
between p=0.380 and p=0.602, respectively, forq
(Bpg(t" +1)Spg(t")) =(m/4,0,0), (@/2,0,0), and ¢,0,0). Each curve is obtained
(1) = (150d? ’ (16)  averaging over a time interval faf of 16°~10 steps and
q

finally averaging the results obtained by-3228 different
simulations. As we can see in figures, at low density the
autocorrelation functions relax to zero with a one step decay;
on the other hand, as the density increases we can recognize
the two-step decay characteristic of glass forming systems.

n As we have said in Sec. Il ¥ (t) satisfies the prediction
pq(t):E g-iani®) (17) of the MCT, Ry(t) (7) must be independent apin the 8

i=1 regime. We have evaluateRy(t) (with t"=400 andt’
=1.6X10°) at some densities for all values qfconsidered

wherer;(t) is the position of theth particle at timet andn  here and we have obtained thigj(t) is independent og on
is the particle number.

where the average - -) is performed on timé’, the density
fluctuation of wave numbeq is defined bydp,=pq—(py).
and

o7 E
27 8o.7
o ®0.6 |
10 +
[ 0.5 F
8 0.4
6j 0,3;
[ 02 F
4r .
[ 2, " 0.1 [
ar \ 0
I ° o _0'1 r 20000,
Oj Vi 1 3 | 5 i 4L sl 3 | 2
bl 10 10 10 10 10 107 4/,
10 10

FIG. 12. [®4,—f4] as function oft/7 for q=(=/4,0,0) atp
FIG. 10.Ry(t) for q=(=/4,0,0), (#/2,0,0), and ,0,0) atden-  =0.548, 0.573, 0.602, 0.615, 0.625. The full line is the von
sity p=0.584. Schweidler law— (t/7)%8
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(1)

P 10 1 10 t/7,

FIG. 13. The relaxation time as function of density. The full

line is the power law (0.66 p)~ 15 FIG. 14. ® as function oft/ 7, for q=(/4,0,0) atp=0.467,
.bbp)

0.490, 0.521, 0.543, 0.573, 0.584. The full line is the stretched

o . o i iore— (17204
a large time intervalsee Fig. 10 In agreement with this XPenential functiore :

result we find that, after the initial transient, the correlators Finally as the density grows the equilibrium system

D4(t) are well fitted by a power law smoothly evolves towards an “ordered” state, analogous to
“a the crystal statéthe system at high enough density can reach
fqthg _> (19 the equilibrium state only if frustration is redudedhs a
to consequence of this fact, the similarity between the annealed
and, in the intermediate time region, by a von SchweidIer(rjneondsftlyand a supercooled glass forming liquid fails at high
law '
t\b V. CONCLUSIONS
fq—hql = » (20 : . .
T The frustrated lattice gas model in the quenched version

presents a thermodynamic transition at a critical density,

where the exponeni andb are independent og. where the static nonlinear susceptibility diverges. The an-

In Figs. 11 and 12 we shoWd(t)—f,] as function, nealed model, which does not present any thermodynamic
respectively, ot andt/ 7 for q=(7/4,0,0) at different values transition, consequently does not show any critical behavior
of densities. As we can see in figures the curves scale for adif the static susceptibility; on the other hand we observe an
values of density considered here and the data are in gooGpparent” divergence of the dynamical susceptibility at a
agreement, respectively, with the power latit)® (with a  value of density, (where the structural relaxation time also
=0.66+0.11 andt,=3.6=3.0) and the von Schweidler law diverges. We suggest that this behavior is due to the fact
—(t/7)® (with b=0.80+0.13). The relaxation time, ob-  that at short enough time the disorder can be considered as
tained as fitting parameter from EO), is an increasing quenched. Moreover the similarity between the annealed
function of density, well represented by a power lape ( model and the supercooled glass forming liquids suggests
—p) 7, with p.=0.66+0.03 andy=1.5+0.2(see Fig. 13 that also in these systems a similar mechanism may be re-
However, the values of the exponertsand b obtained in  sponsible for the critical behavior of the dynamical suscep-
this case do not satisfy the relati¢®) and are not in agree- tibility, and one might speculate that if one could in special
ment with the exponents obtained far(t)). systems freeze some degree of freedom one could find a

In Fig. 14 we show the correlatorB,(t) as functions of behavior similar to systems with quenched disorder.
the rescaled times=t/7,; as we can see, the curves coin-
cide at largd, for all values of density considered here, with

a common master cur\féq, well fitted by a stretched expo- This work was partially supported by the European TMR
nential function[for q= (7/4,0,0) we obtain3=0.45]. This  Network-Fractals(Contract No. FMRXCT980183and IN-
result is consistent with the predictions of the MCT concern-FMPRA(HOP). We acknowledge the allocation of computer
ing the a relaxation. resources from INFM Progetto Calcolo Parallelo.
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